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Abstract. The free energy of the homogeneous electron fluid at finite temperature is obtained using the
lowest order constrained variational (LOCV) method. In order to test the convergence of cluster expansion
series the three-body cluster terms are calculated with the LOCV correlation functions. The results agree
reasonably with those of Monte Carlo, coupled-cluster, perturbational expansion etc, techniques at zero
temperature. The flashing and critical temperatures as well as the critical exponent are found to be
about 0.6, 1.3 eV and 0.384 respectively. A similar liquid-gas phase transition to that of nuclear matter
and liquid He3 is observed.

PACS. 64.70.Fx Liquid-vapor transitions – 71.10.-w Theories and models of many-electron systems –
71.10.Ca Electron gas, Fermi gas – 64.60.Fr Equilibrium properties near critical points, critical exponents

1 Introduction

The uniform electron fluid consists of N electrons em-
bedded in N positively charged ion background at the
thermodynamic limit, such that their densities ρ = N

Ω (Ω
is the volume) are constant [1]. It is possible to distin-
guish three different regions of interest in terms of rs, the
Wigner-Seitz radius in units of Bohr radius, for this sys-
tem: the weak rs ≤ 1, intermediate 1 ≤ rs ≤ 10 and strong
rs ≥ 10 coulomb coupling regions. The weak-coupling and
the intermediate-coupling have been extensively studied
and some accurate results have been obtained.

There are two points in studying such a ideal system:
(i) To obtain the metals properties. (ii) To test different
many-body methods against each other.

Obviously the homogeneous electron fluid is not very
good model for the real physical systems such as metals.
But, at least, it could be considered as an input data for
the local density approximation calculations.

Because of the simplicity of the interaction, most of
the available many-body methods have been mainly ap-
plied to the uniform electron fluid at zero temperature. So
this system can be considered as a good testing ground
for comparison of different many-body techniques. On the
other hand, some of the many-body methods have been
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only designed and applied to the problems which involve
short range interactions. Then it would be interesting to
apply these techniques to the uniform electron fluid, with
its long-range coulomb interaction [2], to find out about
the accuracy and performance of these methods.

In a series of papers the lowest order constrained varia-
tional (LOCV) method was developed [3,4] for calculating
the properties of homogeneous nuclear fluids with realis-
tic nucleon-nucleon interactions [5]. In 1998, this approach
was further generalized to include more sophisticated in-
teractions such as the UV14 [7], the AV14 [6] and the new
argonne AV18 [7] as well as the Reid [5] and ∆-Reid [4,8]
potentials. For a wide range of models our LOCV calcu-
lations agree well with the results of fermion hypernetted
chain (FHNC) calculations where these have performed
and for a number of central potentials, there is agreement
with the essentially exact numerical solutions obtained by
Monte Carlo technique [3,4]. Despite this agreement for
model problems, there has been some dispute about the
convergence of LOCV results in calculations, employing
realistic nucleon-nucleon interactions which are strongly
spin-dependent and which, in particular, contain a sizeable
tensor force. This argument was tested, by calculating the
energy of the three-body cluster contribution in nuclear
matter and the normalization integral 〈ψ | ψ〉 both at zero
and finite temperatures [9]. It was shown that 〈ψ | ψ〉 is
normalized within one percent and the three-body cluster
energy is less than 1 MeV for kf ≤ 1.6 fm−1.
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Our LOCV calculation is a fully self-consistent tech-
nique and is capable of dealing with the well-defined phe-
nomenological potentials such as the ∆-Reid (the modi-
fied Reid potential with an allowance of ∆(1234) degree
of freedom, see references [4,8]) potential. The ∆ state,
being the most important configuration that modifies the
nuclear force, might be the key to the understanding of
three-body forces [10]. The results suggest that the LOCV
method reasonably describes nucleonic-matter properties
at zero and finite temperatures [4,10].

Furthermore, our recent calculations at zero temper-
ature with the UV14 and AV18 potentials [10] shows
a good agreement with more sophisticated calculation
such as the variational fermion hypernetted chain method
(FHNC) [6,11].

The LOCV method has been also developed for calcu-
lating the various properties of homogeneous nuclear flu-
ids such as hot and frozen neutron, nuclear and β-stable
matter with realistic nucleon-nucleon interactions [10]. In
these works the liquid-gas phase transition and corre-
sponding critical temperature were found.

With respect to the above arguments, in this work we
shall attempt to calculate the properties of uniform elec-
tron fluid at finite temperature by using the long-range
coulomb potential and investigate the behavior of its equa-
tion of state with the temperatures and densities.

Various many-body techniques have been applied to
the homogeneous electron fluid: perturbational expan-
sion (PE) [12], variational and diffusion Monte Carlo
(VMC, DMC) [13], variational Fermi-hypernetted-chain
(FHNC) [2,14], coupled-cluster expansion (CCE) [15],
density functional approximation (DFA) [16], random
phase approximation (RPA) [17] and numerical many-
body perturbation expansion (NPE) [18] methods. So we
can compare our results with these techniques to find out
about the accuracy of LOCV calculations with long-range
forces.

So the paper is planned as follows: In Section 2 we
present the uniform electron fluid Hamiltonian. A short
description of the lowest order constrained variational
method and the evaluation of internal energy of uniform
electron fluid with LOCV method is given in Section 3.
The three-body cluster energy is derived in Section 4. Fi-
nally, in Section 5 we calculate the electron gas entropy
and we present the results and discussions.

2 The uniform electron fluid Hamiltonian

The total Hamiltonian of uniform electron fluid with pos-
itive background is usually written as [1]:

H = Hel +Hb +Hel−b (1)

where Hel, Hb and Hel−b are the electron, positive-
background and electron-positive-background Hamilto-
nian respectively. This Hamiltonian can be reduced to [1],

H = −1
2
e2N2Ω−14πµ−2 +Hel (2)

in which

Hel =
N∑

i=1

p2
i

2m
+

1
2
e2

N∑
i�=j

e−µ|ri−rj|

|ri − rj|

=
N∑

i=1

p2
i

2m
+

1
2

N∑
i�=j

V (ij). (3)

The exponential factor and the parameter µ are intro-
duced in this Hamiltonian to make the calculations finite.
Then after performing many-body calculations, usually
the parameter µ, sets to zero, if one intends to have only
the coulomb interaction.

3 The LOCV formalism

In the LOCV method, we use an ideal Fermi gas type
wave function for the single particle states and variational
techniques, to find the wave function of interacting sys-
tem [3,4,11] at finite temperature T i.e.,

ψ = FT Φ
T (4)

where (S is a symmetrizing operator)

FT = S
∏
i>j

f(ij). (5)

In general, the Jastrow correlation functions f(ij) are op-
erators. But in case of uniform electron fluid, because of
the simplicity of coulomb interaction, we assume them to
have the following form:

f(r) = 1 − exp(−ur) +A0 exp
[
−α(r − rc)2

]
= 1 + C(r) (6)

where rc = 1
u and the parameters u,A0 and α are calcu-

lated variationally.
The electron fluid internal energy is written as [3,4,11],

Ein = TF + EMB [f ]. (7)

TF is simply the Fermi gas kinetic energy and it is defined
as

TF = (Ωρ)−1
∑
k,στ

�
2k2

2m
n(k). (8)

The fluid density ρ will fix the chemical potential µ,

ρ = Ω−1
∑
σ,τ,k

n(k) (9)

where

n(k) = [exp((ε∗(k) − µ)β) + 1]−1
. (10)

n(k) is the Fermi-Dirac distribution function, β = 1
kBT

and kB is the Boltzmann factor (we assume kB = 1, so
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the temperature is in eV units). The single particle en-
ergy is approximately written in terms of effective mass
i.e. ε∗(k) = �

2k2

2m∗ and the effective mass,m∗, is determined
variationally (m∗ varies between zero and one, see refer-
ences [6] and [11] for detail).

The many-body energy term EMB [f ] is calculated by
constructing a cluster expansion for the expectation value
of our HamiltonianHel of equation (3). Then, we keep only
the first two terms in a cluster expansion of the energy
functional [19]:

E[f ] =
1
N

〈Ψ |H |Ψ〉
〈Ψ |Ψ〉 = TF + EMB = TF + E2 + E3 + . . .

(11)

The two-body energy term is defined as,

E2 = (2N)−1
∑
ij

〈ij |V|ij 〉a (12)

where

V(12) = − �
2

2m
[
f(12),

[
∇2

12, f(12
]]

+ f(12)V (12)f(12)

(13)

and the two-body antisymmetrized matrix elements
〈ij |V|ij 〉a are calculated by using plane-waves.

In LOCV formalism EMB is approximated by E2 and
one hopes that the normalization constraint makes the
cluster expansion to converge very rapidly and bring the
many-body effect into E2 term.

For the electron fluid, because of the choice of corre-
lation functions, the two-body effective interaction, equa-
tion (13) is reduced to the following equation:

V(12) =
�

2

m
[∇f(12)]2 + f(12)2V (12)

=
�

2

m
[∇C(r)]2 + C(r) [2 + C(r)] V (r) + V (r).

(14)

Now, by using plane waves as the single-particle states,
equation (12) reduces to:

E2 =
1
2
ρ

∫
gF (r)V(r)dr (15)

where

gF (r) =
[
1 − 1

2
(
γ(r)
ρ

)2
]

= 1 + CF (r) (16)

with

γ(r) =
2

(2π)3

∫
n(k)J0(kr) dk. (17)

JJ(x) are the familiar spherical Bessel functions. Finally
the two-body cluster energy is written as:

E2 =
1
2
ρ

[∫
V (r)dr +

∫
CF (r)V (r)dr +

∫ [
(1 + CF (r))

×
[

�
2

m
(∇C(r))2 + C(r)(2 + C(r))V (r)

]
dr

]]
. (18)

The first integral in E2 will be canceled exactly with the
first term in the total Hamiltonian of equation (2) [1].
While the second term, the Hartree-Fock energy, and the
third term can be considered as the correlation energy.

The normalization constraint can also be written as
following:

〈ψ|ψ〉 = ρ

∫
(1 + CF (r))(1 + C(r))2dr = 1. (19)

Note that ξ = [〈ψ|ψ〉 − 1] plays the role of smallness pa-
rameter in the cluster expansion. The above constraint
introduces another parameter in our formalism i.e. the
Lagrange multiplier λ. So at zero (finite) temperature we
minimize the functional {E2 +λ〈ψ|ψ〉}[f ] (free energy, see
Sect. 5) respect to the parameters u, A0, α (including m∗

at finite temperature) and we chose λ such that the above
normalization constraint is satisfied.

4 Three-body cluster term

In order to test the accuracy of LOCV method, we use
the calculated two-body correlation function f(r) and the
two-body effective interaction V(r) to evaluate the three-
body cluster energy [19] i.e.:

E3 =
1
N

∑
ijk

〈ijk | h(r13)V(r12) | kij − ijk〉

+
1

2N

∑
ijk

〈ijk | h(r13)V(r12)h(r23) | ijk〉a

+
1

2N

∑
ijk

〈
ijk

∣∣∣∣ �
2

2m
f2(r12)∇2h(r12) · ∇2h(r23)

∣∣∣∣ ijk
〉

a

+
1
N

∑
ijkl

〈ik | h(r13) | jl〉a〈jl | V(r12) | ik〉a · (20)

Note that the last term in above equation is a special
portion of the four-body terms which is proportional to the
smallness parameter ξ, like the three-body cluster terms.
Then after doing some straightforward operation, we can
write equation (20) as following:

E3 =
∫

dr12

∫
dr13

{{
h(r13)

[
1
ν
γ(r23)(γ(r23)

+
1
ν
γ(r13)γ(r12)) +

1
2
h(r23)

[
1 − 2γ2(r23) −

1
ν
γ2(r12)

+
2
ν2
γ(r12)γ(r23)γ(r13)

]]
+

1
2ν2

∫
dr14γ(r13)γ(r24)

×
[
h(r24)γ(r13)γ(r24) −

1
ν
h(r34)γ(r14)γ(r23)

]}
V(r12)

+
1
2
(h(r13) + 1)h′(r12)h′(r23)

(
r12 · r23

r12r23

)

×
[
1 − 2γ2(r23) −

1
ν
γ2(r12) +

2
ν2
γ(r12)γ(r23)γ(r13)

]}

(21)
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where

h(ij) = f2(ij) − 1 = C(ij)(2 + C(ij)) (22)

and for the electron fluid the degeneracy parameter ν = 2.
Then we can simply add the contribution of the three-
body cluster energy, E3, to the two-body energy E2. It is
clear that the sum E2 + E3 (at zero temperature) should
not be considered as the variational energy, since we have
to vary E2 + E3 + . . . simultaneously to find the upper
bound to the true ground state energy, i.e. E3 is just an
estimate to the three-body cluster energy. So E2 + E3

should not be considered as the upper bound to the true
energy. But if we find that E3 is very small respect to
E2 i.e. the cluster expansion is converges very rapidly, we
can conclude that TF +E2 is a good approximation for the
electron gas upper bound ground state energy. However,
as it will be mentioned in the next section, the variation
of E2 + E3 gives the same contribution as the one we get
by varying E2 and then calculating E3 as a correction.

5 Results and discussion

The total free energy F (ρ, T,m∗) is computed by
minimizing TF + E2 − T S with respect to the C(r)
and the spectrum parameter m∗(T , ρ) where S is the
familiar Fermi-type isothermal entropy per particle [1] i.e.

S(ρ, T ,m∗) = −kB(Ωρ)−1
∑
k,σ

[(1 − n(k)) ln(1 − n(k))

+ n(k) ln(n(k))]. (23)

So F (ρ, T,m∗) can now be differentiated to yield vari-
ous quantities of interest such as pressure P (ρ, T ,m∗) etc
(note that m∗ couples the internal energy and the entropy
when we vary the free energy respect to all of the varia-
tional parameters, including m∗). It is found that for fixed
ρ, α, u and A0 the free energy is a smooth function of m∗

(see Refs. [6] and [11]). This shows that the number of
variational parameter we have considered in our LOCV
calculation is enough.

We start by presenting our results for the frozen
uniform electron fluid. In Figure 1, the dashed and
full curves are our LOCV results without and with
three-body terms (for rs = 4.17, Emin = −1.374 eV with
α = 0.511, A0 = 0.101 and u = 2.013). It is seen that
they are not too different. The dotted curve represents
the results of perturbation expansion (PE) [12] i.e.:

E = 13.6
[
2.21r−2

s − 0.91r−1
s + 0.0622 lnrs

−0.0938 + 0.0184rs ln rs − 0.020rs +O
(
r2s ln rs, r2s

)]
.

(24)

The other available many-body methods, where quoted in
Section 1, have also been shown by different marker style
on this figure. For rs ≤ 4 our ground state energy results
are very closed to PE (as we see later on, in this region,
E3 is less than 20% of E2). The reason is obvious: for very
high density, rs → 0, the LOCV correlation function goes
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Fig. 1. Ground state energy (eV) of uniform electron fluid at
zero temperature. Different curves and mark styles are accord-
ing to the figure legend and text explanation.

to one for any separation and we get the same result as the
perturbation expansion (13.6[2.21r−2

s − 0.91r−1
s ]). On the

other hand for rs ≥ 4 we get a similar density dependence
behavior as those of FHNC, VMC etc. (our results are
shifted about 1 eV upwards). So we can argue that the
LOCV formalism even without the three-body energy is
capable of dealing with long range forces such as coulomb
interaction.

The size of E2 and E3 are plotted in Figure 2. It is
seen that for rs ≥ 1.8, E3 is less than 2 eV (20% of E2)
and it vanishes for rs ≥ 6. It is very encouraging that
E3 is small. So we can argue that for this region (espe-
cially for rs ≥ 1.8) our LOCV method converges very
rapidly and truncation of the cluster expansion after the
two-body term is valid. As we pointed out before, we var-
ied the whole two-body and three-body energies together
and we found the same contribution for E2 + E3 as the
one we obtained in Figure 2. But the individual contri-
butions of E2 and E3 are different from the above LOCV
case and the three-body term is no longer small respect
to the two-body term, as one should expect. This again
shows that the LOCV formalism with its constrained vari-
ational correlation functions makes the cluster expansion
to converge rapidly.

Figure 3 shows the uniform electron fluid free en-
ergy with three-body cluster energy for different temper-
atures (eV) versus density (A−3) (a typical value of the
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Fig. 3. The free energy of uniform electron fluid versus den-
sity (A−3) at different temperatures (eV).

variational parameters at T = 1 eV and ρ = 0.01 A−3

with F = −1.81 eV are α = 0.312, A0 = 0.081, u = 0.316
and m∗ = 0.71). Similar to our previous calculations [9–
11], the free energy per particle decreases with increasing
temperature at constant density. For temperatures greater
than 1 eV the free energy is only increasing function of
density.

The calculated pressure (P) (eVA−3) is presented in
Figure 4. The horizontal dashed lines show the gas-liquid
phase transition. The thermodynamics conditions for the
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Fig. 4. As Figure 3 but for pressure (eVA−3).
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Fig. 5. The liquid-gas phase diagram.

coexistence of two phases are:

µliquid(ρ, T ) = µgas(ρ, T );Pliquid(ρ, T ) = Pgas(ρ, T ).
(25)

In order to find the exact value of critical temperature
i.e. disappearance of liquid phase, in Figure 5 we plot the
gas-phase diagram i.e. gas-liquid phase transition density
versus temperature. It is seen that the critical tempera-
ture is about 1.3 eV. Near the critical temperature we can
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parameterize the gas-phase diagram curve by a critical
exponent of the form:

[ρliquid − ρgas] /ρc ∝
∣∣∣∣−1 − T

Tc

∣∣∣∣
β

· (26)

We find that β = 0.384. This agrees with the correspond-
ing calculation using mean-field theory and Ising model
approach (β = 1

3 ) [20].
Figure 6 shows the densities of zero pressure against

their corresponding temperatures. Its is found that the
flashing temperature is about 0.6 eV and it occurs at
ρ ≈ 0.0166 A−3. This can be, for example compared
with Fermi temperature of Na (3.1 eV) and its work
function which is approximately about 2.14 eV [21] at
ρ = 0.025 A−3. Here we should mention that Tf = 0.6 eV
is the temperature that each electron in uniform elec-
tron fluid have to gain to “leave” the positive background,
whereas the work function of Na is equivalent to the tem-
perature in which an electron can be removed from the
Fermi surface. So one should expect that Tw(Na) 	 Tf .
However, at these temperatures the ions vibrations as well
as surface effect should become important which has been
ignored in our calculation.

The entropy per electron is presented in Figure 7 as
a function of density for different temperatures. As one
expected the entropy is falling suddenly respect to density
but it is a smooth function of temperature.

From the definition of specific heat per electron i.e.

CV = T
(
∂S

∂T

)
ρ

=
(
∂E

∂T

)
ρ

(27)
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we can calculate CV and plot it against temperature for
various densities (Fig. 8). The linear behavior is seen for
low temperatures.

Finally two typical correlation functions at zero tem-
perature (ρ = 0.0156 A−3) and ρ = 0.01(T = 0.5) and
0.02 A−3(1.0 eV) are given in Figure 9 (10). As it is
expected the correlation functions have shorter range as
the density (temperature) is increased (decreased). On the
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Fig. 9. Two typical correlation functions at T = 0.0 and ρ =
0.01 and 0.02 A−3.

other hand at higher densities (temperatures) the correla-
tion functions heal to one with larger (lower) value respect
to low (high) densities (temperatures).

In conclusion we have performed a LOCV calculation
for uniform electron fluid at finite temperature. It was
found that the three-body cluster energy is small. This
indicates that the cluster expansion converges rapidly af-
ter the two-body term. However, this is not a very serious
mathematical criterion for the convergence of cluster ex-
pansion series.

It is encouraging that the behavior of our results are
very similar to those coming from most sophisticated cal-
culations such as FHNC etc. However, for rs > 3 our
ground state energy is 30% higher than the VMC and
FHNC calculations. In general for large rs because of solid
phase the choice we have made for the correlation func-
tion is not justifies (the same thing is true for other tech-
niques). But in order to get more realistic results we could
improve our correlation function in the following ways:
(a) The correlation functions have to depend on the mo-
mentum of electrons in order to make difference between
the correlations deep in the Fermi sea and in the Fermi
surface. (b) The three-body correlation can be taken into
the account. (c) A full functional minimization of the two-
body and three-body cluster energies can be made by solv-
ing the Euler-Lagrange differential equations.

The flashing and critical temperatures as well as the
heat capacity and critical exponent were found. It was
shown that the uniform electron fluid has similar phase di-
agram to that of nuclear matter and liquid He3. Finally, it
is worth to say that a free energy calculations with LOCV
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Fig. 10. Two typical correlation functions at ρ = 0.0156 A−3

and T = 0.5 and 1.0 eV .

formalism for a given density takes less than few minutes
on a Pentium III 450 MHz personal computer.
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